

Journal of Molecular Catalysis A: Chemical 136 (1998) 203-211

In situ diffuse reflectance infrared Fourier transform spectroscopy study of surface species involved in NO_x reduction by ethanol over alumina-supported silver catalyst

Tarik Chafik ^{a,b,*}, Satoshi Kameoka ^b, Yuji Ukisu ^b, Tatsuo Miyadera ^b

^a University of Tangier, Faculty of Science and Technology, Department of Chemistry, P.O. Box 416, Tangier, Morocco ^b National Institute for Resources and Environment, Combustion Engineering Department 16-3, Onogawa, Tsukuba, Ibaraki 305, Japan

Received 1 October 1997; accepted 17 January 1998

Abstract

In situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy has been used to investigate the surface species involved in NO_x reduction by ethanol over alumina-supported silver catalyst. The experiments were carried out in dynamic conditions (under reaction mixture flow and reaction temperature) at atmospheric pressure. The DRIFT measurements were combined with gas chromatography (GC) analysis to monitor the N₂ formation under reaction mixture and when the reaction mixture flow was switched to He followed by heating the catalyst under He flow (mixture, $250^{\circ}C \rightarrow$ He, $250^{\circ}C \rightarrow$ heating under He). A parallelism has been observed between the isocyanate band change and N₂ formation during the step change experiment using an initial C₂H₅OH/NO/O₂/He reaction mixture. Furthermore, the isocyanate species (NCO) were found to be generated from the decomposition of adsorbed organic nitro compounds formed under both ethanol/NO/O₂/He and ethanol/NO/He and reaction mixtures. The role of oxygen in NO_x reduction process was determined by comparing the result of different step-change experiment using an initial reaction mixture. Sugnature containing oxygen and without oxygen. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: In situ DRIFT; NO_x reduction; Ethanol; Silver; Alumina

1. Introduction

Since the past few years, there has been a great attention paid to environmental issues. One of the main concerns is related to nitrogen oxides (NO_x) which represent a serious menace to air quality. Removal of NO_x contained in automotive exhaust is achieved with the 'three way' catalytic converters containing Pt, Pd and Rh supported on alumina and ceria. As for NO_x

elimination from stationary installation emissions (e.g., power station), selective catalytic reduction (SCR) using ammonia as a reducing agent is the most common method used commercially. However, several inconvenient aspects are associated with this technology mainly because of ammonia toxicity, transportation, and storage equipment corrosion. One of the promising process up to date is based on NO_x reduction by hydrocarbons in excess of oxygen. However, the Cu–ZSM-5 catalyst generally used is still not quite effective yet for reducing NO_x

^{*} Corresponding author.

^{1381-1169/98/\$ -} see front matter © 1998 Elsevier Science B.V. All rights reserved. PII: \$1381-1169(98)00053-3

with hydrocarbon under oxidizing atmosphere in presence of water [1]. The challenge facing catalyst technologists is to design an efficient system capable of reducing NO_x from the heavily oxidizing exhaust-gas (e.g., diesel engine).

Mivadera et al. [2] recently reported an interesting finding related to the use of oxygen-containing organic compounds (such as ethanol) for reducing effectively NO_r over Ag/Al_2O_3 even in the presence of water and excess of oxygen. At present, this system has been practically used to achieve around 80% of NO, removal from diesel engine emissions [3]. Therefore, further information must still be provided for elucidating the mechanism of NO_x reduction process. In an attempt to address this issue, Ukisu et al. [4] recently reported the formation of adsorbed isocyanate species on Ag/Al₂O₃ catalyst on the basis of static FTIR experiment of C₂H₅- $OH/NO/O_2$ adsorption at low temperature and heating in vacuum to 350°C. However, the role of these species as reaction intermediate has not been fully established since the experiments were carried out under different lean NO_x reduction reaction conditions. In fact, most of the mechanistic studies reported in literature were performed under such conditions and various surface species containing carbon and nitrogen have been observed on different lean NO_x catalysts. Yasuda et al. [5] observed the formation of nitro, nitrite compounds and isocyanate species over Ce-ZSM-5 catalyst under C₃- $H_6/O_2/NO$. The same mixture was used by Hayes et al. [6] to generate organic nitrile species over Cu–ZSM-5 catalyst. Bell et al. [7] observed $Cu = (N_v O_v)_z$, organic NCO and Cu = NCOspecies on Cu-ZSM-5 catalyst. All these species were proposed to take part into NO_x reduction process, but definitive data explaining the mechanism of NO_x reduction with hydrocarbons or oxygen-containing organic compounds in excess of oxygen are still expected.

The in-situ characterization of catalyst surface (under reactant flow and at reaction temperature) using FTIR spectroscopy has proven to be a powerful tool for investigating the dynamics of surface reaction process and to identify surface adsorbed intermediate. Combining FTIR spectroscopy with a gas phase product analysis (such as GC) is an effective approach permitting the monitoring of gas phase product composition as well as catalyst surface species evolution. As a result, more details on surface intermediates species are provided. This has a major advantage of distinguishing between adsorbed reaction intermediate and spectator species, which is extremely important for heterogeneously catalyzed reaction mechanistic study.

In this paper, in-situ diffuse reflectance IR spectroscopy has been used to study the behavior of surface species formed on Ag/Al_2O_3 under $C_2H_5OH/NO/O_2/He$ and $C_2H_5OH/NO/He$ mixtures as well as upon switch to He flow and during heating under He process. The in-situ diffuse reflectance infrared Fourier transform (DRIFT) measurements has been combined with GC analysis to monitor N_2 formation during different steps of experiment. Particular attention was given to emphasize the effect of oxygen on the behavior of surface species and its role in NO_x reduction process.

2. Experimental

The catalyst used in this work was an alumina-supported silver catalyst (Ag/Al_2O_3) prepared by an ordinary impregnation method according to the previously outlined procedure [2]. The silver content in the catalyst was 2% by weight corresponding to the reported highest activity catalyst composition [2].

The infrared spectrometer used is a NICO-LET MAGNA 550 equipped with a MCT detector and a KBr beamsplitter. The instrument was operated using a specific macro elaborated to perform automatic spectra acquisition at resolution of 4 cm⁻¹ by averaging sets of 16 scans. The catalyst pretreatment and in-situ DRIFT experiments were conducted in DRIFT cell (Spectra Tech) permitting measurements in a controlled gas atmosphere and temperature. Prior to the reaction, the catalyst was treated in-situ under 10% O₂/Ar flow at 500°C for 3 h followed by He purging for 30 min. A clean catalyst surface spectrum was then recorded at reaction temperature to be used as a background to which experiment spectra were corrected, and the final spectra was presented in Kubelka-Munk form. All the gases used to make a simulated exhaust stream were of ultra high purity. A reaction mixture flow of 500 ppm ethanol/800 ppm NO/10% O_2 and He balance was directly introduced to the DRIFT cell at a flowing rate of 60 cm³ min⁻¹. As for N₂ formation analysis, the same mixture was flowed at 200 cm^3 min⁻¹ through a quartz continuous flow reactor connected to a gas chromatograph equipped with a molecular sieve 5A column and TC detector. A linear heating rate of 10°C min⁻¹ was applied to the quartz reactor for heating under He experiment. As for the DRIFT cell. the sample holder heating was manually controlled to perform an approximate heating rate of 10°C min⁻¹.

3. Results and discussion

3.1. Surface species formed during $C_2H_5OH/NO/O_2/He$ reaction at various temperatures

Fig. 1 shows the DRIFT spectra recorded at different temperatures on Ag/Al₂O₃ after 30 min under C₂H₅OH/NO/O₂/He flow. For the spectra (a) and (b) recorded at 150 and 250°C, respectively, there are no differences in the spectral region between 1300 and 1750 cm⁻¹. The IR bands identification at this region requires a short overview of the assignment reported in the literature; one attribute the observed bands to several surface species such as formate, formyl, aldehyde or carbonyl resulting from the partial oxidation of ethanol which produce IR bands at spectral region between 1300 and 1750 cm⁻¹. In fact, the shoulder at 1750 cm⁻¹ observed in spectra (a) only was

Fig. 1. In-situ FTIR spectra of Ag/Al_2O_3 catalyst after 30 min under $C_2H_5OH/NO/O_2$ /He at different temperatures. (a) 150°C, (b) 250°C, (c) 350°C, (d) 470°C.

tentatively assigned by Tanaka et al. [8] to an organic carbonyl species considering the absence of isotope shift when ¹⁵NO was used in their experiment. The band at 1635 cm^{-1} was attributed to C=O mode of formyl species [9] or OH deformation of adsorbed water as suggested by Haves et al. [6]. According to Nakamoto [10], the IR band at 1635 cm^{-1} is characteristic of C=O vibration of an aldehyde, whereas the band at 1580 cm^{-1} is attributed to C–O asymmetric stretching mode of a carboxylic group which has also a symmetric stretching vibration at 1470 cm⁻¹. Moreover, the IR band at 1580 cm⁻¹ could also be associated with OCO asymmetric stretching of a formate species which has also a symmetric stretching band at 1330 cm^{-1} and a CH bending around 1405 cm^{-1} [11,12]. As a consequence, it could be generally admitted that the IR bands observed in the region 1300-1750 cm⁻¹ indicate the formation of $C_x H_y O_z$ species resulting from the partial oxi-

dation of ethanol on Ag/Al_2O_2 . In support of this, the recent TPO study of ethanol on Ag/Al₂O₂ conducted by Cordi and Falconer [13] indicated acetaldehyde as a main product of the partial oxidation of ethanol on Ag/Al_2O_2 which gives rise also to CO₂, CO, H₂ and $C_{2}H_{4}$. Therefore, the high intensity of the IR bands at 1580 and 1635 cm^{-1} may generate an overlapping of other surface species IR bands such as nitrogen-containing species which also gives IR bands at the spectral range between $1300-1750 \text{ cm}^{-1}$. Tanaka et al. [8] observed IR bands at 1565 and 1405 cm⁻¹ assigned to adsorbed organic nitro compounds on the basis of isotope shift for ¹⁵NO and comparison with the spectra of standard organic nitro compound. Similar results were also reported by Hayes et al. [6]. Additionally, studies of nitromethane adsorption on Ag/Al₂O₂ catalyst performed recently in our laboratory [14] revealed the formation of the same IR bands at 1565 and 1405 cm^{-1} . Accordingly, the shoulder at 1565 cm^{-1} and the band at 1405 cm^{-1} of spectra (a) are associated, respectively, with $\nu_{as}(NO_2)$ asymmetric and $\nu_{\rm c}(\rm NO_2)$ symmetric stretching mode of an organic nitro group. It could be concluded that the IR features observed in the spectra (a) and (b) at 1300-1750 cm⁻¹ region are attributed to some $C_r H_v O_z$ and adsorbed nitrogen-containing species.

The main differences between the spectra (a) and (b) are observed at 2000–2500 cm^{-1} spectral range, where a large band centered at 2080 cm^{-1} due to a linear adsorbed CO [15] is formed at 150°C (spectrum (a)). The CO required for the formation of the band at 2080 cm^{-1} is provided by the partial oxidation of ethanol. The aforementioned CO band at 2080 cm^{-1} was not detected in the spectrum (b) obtained during the exposure of Ag/Al_2O_3 catalyst to ethanol/NO/O₂ mixture at 250° C. However, the intensity of the small band located at 2235 cm^{-1} in the spectrum (a) drastically increased at 250°C (spectrum (b)) and was formed together with IR bands at 2130 and 2165 cm^{-1} in the spectral range between 2000–

 2500 cm^{-1} . According to the static IR study of ethanol/NO/O₂ adsorption on Ag/Al₂O₃ conducted recently in our laboratory by Ukisu et al. [4], two IR bands at 2262 and 2232 cm^{-1} were attributed to two different NCO on Al₂O₂ and Ag-NCO, respectively, because the higher frequency band was observed on Al₂O₂ alone. Note that the experiment of the present study performed in dynamic conditions led to the detection of one IR band at 2235 cm^{-1} . The assignment of isocyanate species reported in the literature was a matter of debate. Unland [16,17] pointed out that isocyanate species coordinated to the metal have an absorption band in the region between 2180 and 2000 cm^{-1} and isocvanate coordinated to the support (e.g., alumina) have an absorption band in the region between 2230 and 2260 cm⁻¹. A similar conclusion was reported by Arai and Tominaga [15]. Solvmosi and Bansagi [18] as well as by the recent work of Bamwenda et al. [19]. Moreover, Li et al. [20] and Yang et al. [21] reported that the reduction of NO on Cu-ZrO₂ in excess of O_2 by C_3H_6 , as well as when ethanol was used in place of C_3H_6 , led to the formation of two IR band at 2140 and 2190 cm⁻¹ assigned to CN and NCO species, respectively, on the basis of isotopic shift. Taking these facts into consideration, the IR bands of spectrum (b) at 2130, 2165 and 2235 cm^{-1} are tentatively assigned to two different CN and NCO species. In order to provide direct evidence for the assignment of the IR band at 2235 cm^{-1} to Ag–NCO species, isocvanic acid has been adsorbed on Ag/Al_2O_2 catalyst at 250°C. In the present work, the isocvanic acid vapor adsorption leading to surface active adsorbate on Ag/Al_2O_3 catalyst, have been carried out by performing an in-situ depolymerization of cyanuric acid $((HOCN)_{2})$ at 450°C according to the procedure outlined by Herzberg and Reid [22]. The FTIR spectrum recorded in static conditions following a prolonged HNCO gas phase evacuation (Fig. 2) clearly indicated the formation of an intense NCO IR band at 2235 cm^{-1} , accompanied with an NCO stretching vibration at 1372 cm⁻¹ [22].

Fig. 2. FTIR spectra recorded after adsorption and evacuation of isocyanic acid (HNCO) on Ag/Al_2O_3 catalyst at 250°C.

When the catalyst is exposed to the NO/ethanol/ O_2 reaction mixture at 350°C (spectrum (c), Fig. 1), the band intensities of NCO and CN species decreased and disappeared completely at reaction temperature of 470°C (spectrum (d), Fig. 1). The same behavior is observed for the IR bands at 1300-1750 cm^{-1} spectral range where less IR bands were detected by increasing reaction temperature. This fact may be related to the thermal stability and/or an increased reactivity of the adsorbed species with the temperature as well as an augmentation of reaction kinetic which shortens the lifetime of adsorbed species on the catalyst surface. On the other hand, the activity of Ag/Al_2O_3 catalyst for NO_x reduction with ethanol was found to depend strongly on the reaction temperature and exhibit a maximum between 350 and 400°C [2]. Nevertheless, the NO_x reduction by ethanol at 250°C was reported to proceed with a reasonable activity [2], moreover, the most interesting IR features as well as the better detection of surface species resulting from $C_2H_5OH/NO/O_2/He$ reaction were provided by the in-situ studies at 250°C. These reasons justify the choice of the 250°C temperature to investigate the reactivity of surface species involved in NO_x reduction by ethanol.

3.2. Surface species formed under different reaction mixtures at 250°C

Fig. 3 shows IR spectra of surface species on Ag/Al₂O₂ catalyst at 250°C after 30 min exposure to three different mixtures; ethanol/ $NO/O_2/He$, ethanol/NO/He and $NO/O_2/$ He corresponding to the spectra (a), (b) and (c), respectively. For the spectrum (a) discussed previously, it was pointed out that the contact of catalyst with ethanol/NO/ O_2 /He mixture gave rise to several surface species namely isocyanates, cyanides, nitro-organic compounds and some C₄H₄O₅ species resulting from the partial oxidation of ethanol. As for the spectrum (b) obtained under ethanol/NO mixture, although the formed IR bands present lower intensity, the absence of oxygen in the mixture did not generate any change in the position of the IR band at $1300-1750 \text{ cm}^{-1}$ region and therefore the same assignment may be applied also to this spectrum, indicating the formation

Fig. 3. In-situ FTIR spectra of surface species on Ag/Al₂O₃ catalyst at 250°C after 30 min under different reactions mixtures. (a) $C_2H_5OH/NO/O_2$ /He, (b) $C_2H_5OH/NO/He$, (c) NO/O₂ /He.

of $C_x H_y O_z$ species and nitrogen-containing organic compounds. Similar results were obtained by Gaudin et al. [23] from GC–MS study of NO/C₃H₆ reaction on Cu–MFI catalyst. The same observations were also reported by Hayes et al. [6] who explained the nitro species formation in the absence of oxygen in propene/NO mixture by an interaction with the extra-lattice oxygen of the zeolite. However, it should be noted that the intensity of NCO band observed in spectrum (b) is very small and hardly detected at 2216 cm⁻¹, this position indicated that the nature of the NCO adsorption silver site has been affected by the absence of oxygen in the mixture.

The spectrum (c) recorded under NO/O₂/He mixture showed the formation of intense bands at 1580 and 1295 cm⁻¹ assigned according to literature to surface nitrates (NO₃⁻) species resulting from the oxidation of NO by oxygen [24,25]. The presence of IR bands at the same position in the spectra (a) and (b) suggest also the formation of NO₃⁻ species when the catalyst is exposed to ethanol/NO/O₂/He, ethanol/NO/He mixtures.

3.3. Surface species evolution during step change experiment at $250^{\circ}C$ (mixture \rightarrow He)

The in-situ FTIR spectra recorded at 250°C under $C_2H_5OH/NO/O_2/He$ and $C_2H_5OH/NO/O_2/He$ mixtures implies the presence of adsorbed nitrates, isocyanate and organic nitro compounds as well as some $C_xH_yO_z$ species resulting from the partial oxidation of ethanol. It is of interest to investigate the dynamic behavior and the reactivity of the observed adsorbates simultaneously with N₂ formation under reaction mixture and during step change experiment such as a switch followed by heating under He flow.

3.3.1. $(C_2H_5OH/NO/O_2/He \text{ at } 250^\circ C) \rightarrow$ He at $250^\circ C \rightarrow$ heating under He flow

Fig. 4 shows the spectra change upon the switching of gas from reactant mixture (after

Fig. 4. FTIR spectra change upon the switching from reactant mixture to He flow after 30 min exposition ($C_2H_5OH/NO/O_2/He$, 250°C \rightarrow He, 250°C \rightarrow Heating under He). (a) After 30 min under $C_2H_5OH/NO/O_2/He$ at 250°C, (b) after 15 min under He at 250°C, (c) during heating under He flow at 400°C, (d) during heating under He flow at 500°C.

exposure at 250°C for 30 min) to He followed by heating under He flow. The isothermal exposure of the catalyst to the He flow leads to a decrease in NCO band intensity, meanwhile the IR band at the $1300-1750 \text{ cm}^{-1}$ spectral region seems to be hardly affected. However, the heating under He generates a drastic change in the recorded spectra; the increase of the NCO band is accompanied with a clear decrease in the IR bands at 1405 and 1565 cm⁻¹ corresponding to the organic nitro species. These features are clearly showed by the spectrum (c) recorded at 400°C where the NCO band reached its maximum. The spectrum (d) recorded at 500°C showed only a presence of the two intense IR bands at 1580 cm^{-1} and 1470 cm^{-1} as well as the band at 1330 cm^{-1} which disappeared later on during the heating process (spectra not shown). These bands may be assigned to some

 NO_3^- and/or carboxylates and formates species considered as spectator species according to their behavior. From these results, correlation between the adsorbed NCO formation and the decomposition of organic nitro species can be made, indicating that the regeneration of surface NCO species observed during the heating under He process is apparently originated from the decomposition of adsorbed organic nitro compounds. Thus, the importance of the two aforementioned species in the process of NO_x reduc-

tion. Further confirmation of the role of NCO species in NO_x reduction is demonstrated in Fig. 5 showing the evolution of the IR band area at 2235 cm⁻¹ and N₂ production during the step change experiment (C₂H₅OH/NO/O₂/He, 250°C \rightarrow He, 250°C \rightarrow heating under He flow). The clear detection of the NCO band at 2100–2350 cm⁻¹ region made it easier to integrate rather than the complex R–NO₂ bands

tion by ethanol has to be taken into considera-

Fig. 5. Evolution of the N₂ production (A) and NCO band area at 2335 cm⁻¹ (B) during the step change experiment (C₂H₅ OH/NO/O₂/He, 250°C \rightarrow He, 250°C \rightarrow Heating under He flow).

located in the 1300-1750 cm⁻¹ region. The shape of N₂ formation monitoring showed in Fig. 5A is similar to the NCO band area curve (Fig. 5B). Under reaction mixture flow, the detected N₂ is originated from NO₂ reduction by ethanol. The switch from the reaction mixture to He (C₂H₅OH/NO/O₂/He, 250°C \rightarrow He, 250°C) led to a decrease in the intensity of NCO band accompanied with a diminution of N₂ formation. Heating under He flow led to a detection of N₂ and a regeneration of NCO species which seems to be resulting from the decomposition of adsorbed organic nitro compounds occurring at temperatures higher than 250°C. The curves of N₂ formation and NCO peak area obtained during the heating step exhibited the same maximum around 400°C.

The parallelism between the N_2 formation and the NCO band area change indicated by Fig. 5A and B strongly support the participation of NCO species (formed by organic nitro compounds decomposition) into the NO_x reduction process.

3.3.2. $(C_2H_5OH/NO/He \text{ at } 250^{\circ}C) \rightarrow He \text{ at}$ 250°C \rightarrow heating under He flow

In order to investigate the role of oxygen in NO, reduction by ethanol, similar in-situ step change experiments were performed in the absence of O_2 in (Fig. 6). It was previously indicated that under C₂H₅OH/NO/He mixture, the IR bands observed in the spectral region between 1300 and 1750 cm^{-1} (spectrum (a), Fig. 6) are almost similar to those of spectrum (a) of Fig. 4. It should be noted that the NCO band produced by $C_2H_5OH/NO/He$ reaction was located at 2216 cm^{-1} (Fig. 6). The switch to He led to an increase of NCO band intensity which might arise from the same decomposition profile of the nitro organic compounds. The NCO band intensity after switching to He at 250°C and during heating under He was smaller as compared with the one formed in the case of step change experiment performed with C₂H₅OH/NO/O₂/He mixture. Furthermore, the GC analysis of N₂ formation during

Fig. 6. FTIR spectra change upon the switching from reactant mixture without O₂ to He flow (C₂H₅OH/NO/He, 250°C \rightarrow He, 250°C \rightarrow Heating under He flow). (a) After 30 min under C₂H₅OH/NO/He at 250°C, (b) after 10 min under He at 250°C, (c) during heating under He flow at 400°C, (d) during heating under He flow at 500°C.

step change experiment with $C_2H_5OH/NO/He$ mixture showed the absence of N₂ formation neither under reaction mixture nor during the heating process. This result may be related to fact that the quantities of N_2 formed were very small to be detected by our analytical apparatus. From the above experiments, it could be concluded that the absence of oxygen in the reaction mixture did not affect the nature of the nitrogen-containing surface species formation as well as their thermal decomposition. Therefore, the presence of oxygen in the reaction mixture strongly enhanced N₂ production during C₂H₅- $OH/NO/O_2/He$ reaction on Ag/Al_2O_3 . The way in which nitro compounds decompose to form dinitrogen and adsorbed NCO species in our experiment remains unclear. Certainly, gas phase and/or adsorbed oxygen is needed to decompose the adsorbed nitrogen-containing species and to contribute to their formation from NO reaction with ethanol. The fact that the

latter processes took place in the absence of oxygen in gas phase mixture strongly justify the implication of adsorbed oxygen on silver stored during the oxidative pretreatment of the catalyst. In support of this, the recent result of Aoyama et al. [26] where the oxidized Ag/ Al_2O_3 was reported to be highly active for NO_x reduction with ethanol and propene rather than the reduced catalyst. The authors explained this result in terms of specific oxygen silver interaction. This issue has been addressed by many works in the literature where the presence of diatomic oxygen on catalyst surface was a matter of argue, but the dissociation of O_2 on silver above room temperature was also reported to give rise to adsorbed O^- species which were the most active adsorbed oxygen forms [27-29]. The highest reactivity of this species was related to the relatively weak oxygen bond with silver. Furthermore, silver surface was also found to present another interesting aspect related to its strong ability to adsorb other gases once the surface contains adsorbed oxygen [30].

Considering silver oxygen affinity in Ag/Al_2O_3 catalyst, it seems to be clear that the role of oxygen in NO_x reduction process is not limited only (i) to convert NO to NO_2 [31,32] and/or (ii) to clean the catalyst surface from carbonaceous deposit [33] and/or (iii) to keep the metal particles in high oxidation state [31,34], but also to participate in the process of NO_x reduction by ethanol on Ag/Al_2O_3 by enhancing the decomposition of organic nitro

Fig. 7. Possible mechanistic scheme of NO_x reduction by ethanol on Ag/Al₂O₃.

compounds and the formation of N_2 and NCO surface species. Accordingly, a possible mechanistic scheme of NO_x reduction by ethanol on Ag/Al₂O₃ is summarized on Fig. 7. It has been suggested that the adsorbed NCO species gives N₂, CO₂ and CO in the presence of NO and/or O₂ [35]. Kinetic studies on the reactivity of NCO species are under investigation in our laboratory.

4. Conclusion

In-situ DRIFT monitoring of surface species combined with gas phase analysis by gas chromatography revealed a parallelism between the N_2 production and the NCO band behavior during NO_x reduction by ethanol over aluminasupported silver catalyst as well as upon switching from reaction mixture to He flow.

The decomposition under He flow of organic nitro compounds formed with $C_2H_5OH/NO/$ He in the absence of O_2 as well as in presence of O_2 in the mixture leads to the generation of adsorbed isocyanate and N_2 production. However, it should be pointed out that the presence of oxygen in the reaction mixture is necessary to enhance drastically the N_2 formation and to decompose the nitrogen-containing species to adsorbed NCO species.

Acknowledgements

T.C. gratefully acknowledges the Science and Technology Agency of Japan (S.T.A.) for the financial support.

References

- [1] M. Iwamoto, H. Hamada, Catal. Today 10 (1991) 57.
- [2] T. Miyadera, Appl. Catal. B 2 (1993) 199.

- [3] T. Miyadera, A. Abe, G. Muramatsu, K. Yoshida, Advanced Materials 93V/A: Ecomaterials, 1994, p. 405.
- [4] Y. Ukisu, T. Miyadera, A. Abe, K. Yoshida, Catal. Lett. 39 (1996) 265.
- [5] H. Yasuda, T. Miyamoto, M. Misono, Am. Chem. Soc. Div. Petrol. Chem. 39 (1) (1994) 99, Preprints.
- [6] N.W. Hayes, R.W. Joyner, E.S. Shpiro, Appl. Catal. B 8 (1996) 343.
- [7] V.A. Bell, J.S. Feeley, M. Deeba, R.J. Farrauto, Catal. Lett. 29 (1994) 15.
- [8] T. Tanaka, T. Okuhara, M. Misono, Appl. Catal. B 4 (1994) L1.
- [9] A. Kiemann, J.P. Hindermann, in: S. Kaliaguine (Ed.), Keynotes in Energy Related Catalysis, Vol. 35, Elsevier, Amsterdam, 1988, p. 181.
- [10] K. Nakamoto, Infrared and Raman Spectra of Coordination Compounds, Wiley, New York, 1986.
- [11] T. Chafik, D. Bianchi, S.J. Teichner, Top. Catal. 2 (1995) 103.
- [12] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, Appl. Catal. 105 (1993) 223.
- [13] E.M. Cordi, J.L. Falconer, Appl. Catal. 151 (1997) 179-191.
- [14] S. Kameoka, T. Chafik, Y. Ukisu, T. Miyadera, Catal. Lett. 51 (1998) 11.
- [15] H. Arai, H. Tominaga, J. Catal. 43 (1976) 131.
- [16] M.L. Unland, J. Catal. 31 (1973) 459.
- [17] M.L. Unland, J. Phys. Chem. 77 (1973) 1952.
- [18] F. Solymosi, T. Bansagi, J. Catal. 156 (1995) 75.
- [19] G. Bamwenda, A. Ogata, A. Obuchi, J. Oi, K. Mizuno, J. Skrzypek, Appl. Catal. B 6 (1995) 311.
- [20] C. Li, K.A. Bethke, H.H. Kung, M.C. Kung, J. Chem. Soc., Chem. Commun. (1995) 813.
- [21] B.L. Yang, M.C. Kung, H.H. Kung, B.W. Jang, J.J. Spivey, Paper 83e presented in the 1994 AIChE Annual Meeting, San Francisco, November 1994.
- [22] G. Herzberg, C. Reid, Disc. Faraday Soc. 9 (1950) 92.
- [23] C. Gaudin, D. Duprez, G. Mabilon, M. Prigent, J. Catal. 160 (1996) 10.
- [24] H. Hadjivanov, D. Klissurski, G. Ramis, G. Busca, Appl. Catal. B 7 (1996) 251.
- [25] J.W. London, A.T. Bell, J. Catal. 31 (1973) 32.
- [26] N. Aoyama, K. Yoshida, A. Abe, T. Miyadera, Catal. Lett. 43 (1997) 249.
- [27] D.I. Kondarides, X.E. Verykios, J. Catal. 143 (1993) 481.
- [28] A.V. Khasin, Kim. Catal. 34 (1993) 42.
- [29] S. Imamura, M. Ikebata, T. Ito, T. Ogita, Ind. Eng. Chem. Res. 30 (1991) 217.
- [30] K.L. Anderson, J.K. Plischke, M.A. Vannice, J. Catal. 128 (1991) 148.
- [31] J.O. Petunchi, W. Keith Hall, Appl. Catal. B 2 (1993) L17.
- [32] K. Yogo, E. Kikuchi, Surf. Sci. Catal. 84 (1994) 1547.
- [33] J.L. d'Itri, W.M.H. Sachlter, Appl. Catal. B 2 (1993) L27.
- [34] T. Pieplu, F. Poignant, A. Vallet, J. Saussey, J.C. Lavalley, Proc. 3rd Int. Conf. Catal. and Autom. Pollution Control, Brussels, 20–22 April, 1994.
- [35] Y. Ukisu, S. Sato, G. Muramatsu, K. Yoshida, Catal. Lett. 11 (1991) 177.